Scaffoldings and Spines: Organizing High-Dimensional Data Using Cover Trees, Local Principal Component Analysis, and Persistent Homology
نویسندگان
چکیده
We propose a flexible and multi-scale method for organizing, visualizing, and understanding datasets sampled from or near stratified spaces. The first part of the algorithm produces a cover tree using adaptive thresholds based on a combination of multiscale local principal component analysis and topological data analysis. The resulting cover tree nodes consist of points within or near the same stratum of the stratified space. They are then connected to form a scaffolding graph, which is then simplified and collapsed down into a spine graph. From this latter graph the stratified structure becomes apparent. We demonstrate our technique on several synthetic point cloud examples and we use it to understand song structure in musical audio data.
منابع مشابه
High-dimensional Classification for Brain Decoding High-dimensional Classification for Brain Decoding
Brain decoding involves the determination of a subject’s cognitive state or an associated stimulus from functional neuroimaging data measuring brain activity. In this setting the cognitive state is typically characterized by an element of a finite set, and the neuroimaging data comprise voluminous amounts of spatiotemporal data measuring some aspect of the neural signal. The associated statisti...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملMethods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملStudy of Physical and Chemical Soil Properties Variations Using Principal Component Analysis Method in the Forest, North of Iran
The field study was conducted in one district of Educational-Experimental forest at Tehran University (Kheirood-Kenar forest) in the North of Iran. Eighty-five soil profiles were dug in the site of study and several chemical and physical soil properties were considered. These factors included: soil pH, soil texture, bulk density, organic carbon, total nitrogen, extractable phosphorus and depth ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1602.06245 شماره
صفحات -
تاریخ انتشار 2016